Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(30): e2122227119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858420

RESUMO

NF-κB-mediated endothelial activation drives leukocyte recruitment and atherosclerosis, in part through adhesion molecules Icam1 and Vcam1. The endothelium is primed for cytokine activation of NF-κB by exposure to low and disturbed blood flow (LDF)but the molecular underpinnings are not fully understood. In an experimental in vivo model of LDF, platelets were required for the increased expression of several RNA-binding splice factors, including polypyrimidine tract binding protein (Ptbp1). This was coordinated with changes in RNA splicing in the NF-κB pathway in primed cells, leading us to examine splice factors as mediators of priming. Using Icam1 and Vcam1 induction by tumor necrosis factor (TNF)-α stimulation as a readout, we performed a CRISPR Cas9 knockout screen and identified a requirement for Ptbp1 in priming. Deletion of Ptbp1 had no effect on cell growth or response to apoptotic stimuli, but reversed LDF splicing patterns and inhibited NF-κB nuclear translocation and transcriptional activation of downstream targets, including Icam1 and Vcam1. In human coronary arteries, elevated PTBP1 correlates with expression of TNF pathway genes and plaque. In vivo, endothelial-specific deletion of Ptbp1 reduced Icam1 expression and myeloid cell infiltration at regions of LDF in atherosclerotic mice, limiting atherosclerosis. This may be mediated, in part, by allowing inclusion of a conserved alternative exon in Ripk1 leading to a reduction in Ripk1 protein. Our data show that Ptbp1, which is induced in a subset of the endothelium by platelet recruitment at regions of LDF, is required for priming of the endothelium for subsequent NF-κB activation, myeloid cell recruitment and atherosclerosis.


Assuntos
Aterosclerose , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Processamento Alternativo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Endotélio/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo
2.
Lab Invest ; 102(2): 204-211, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775494

RESUMO

Endothelial cells are important contributors to brain development, physiology, and disease. Although RNA sequencing has contributed to the understanding of brain endothelial cell diversity, bulk analysis and single-cell approaches have relied on fresh tissue digestion protocols for the isolation of single endothelial cells and flow cytometry-based sorting on surface markers or transgene expression. These approaches are limited in the analysis of the endothelium in human brain tissues, where fresh samples are difficult to obtain. Here, we developed an approach to examine endothelial RNA expression by using an endothelial-specific marker to isolate nuclei from abundant archived frozen brain tissues. We show that this approach rapidly and reliably extracts endothelial nuclei from frozen mouse brain samples, and importantly, from archived frozen human brain tissues. Furthermore, isolated RNA transcript levels are closely correlated with expression in whole cells from tissue digestion protocols and are enriched in endothelial markers and depleted of markers of other brain cell types. As high-quality RNA transcripts could be obtained from as few as 100 nuclei in archived frozen human brain tissues, we predict that this approach should be useful for both bulk analysis of endothelial RNA transcripts in human brain tissues as well as single-cell analysis of endothelial sub-populations.


Assuntos
Encéfalo/metabolismo , Núcleo Celular/metabolismo , Citometria de Fluxo/métodos , Células Endoteliais da Veia Umbilical Humana/metabolismo , RNA/metabolismo , Análise de Célula Única/métodos , Animais , Encéfalo/citologia , Fracionamento Celular/métodos , Células Cultivadas , Criopreservação/métodos , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , RNA/isolamento & purificação , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , Bancos de Tecidos , Regulador Transcricional ERG/metabolismo
3.
Sci Rep ; 11(1): 19835, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615942

RESUMO

The extracellular matrix protein fibronectin (FN) is alternatively spliced in a variety of inflammatory conditions, resulting in increased inclusion of alternative exons EIIIA and EIIIB. Inclusion of these exons affects fibril formation, fibrosis, and inflammation. To define upstream regulators of alternative splicing in FN, we have developed an in vitro flow-cytometry based assay, using RNA-binding probes to determine alternative exon inclusion level in aortic endothelial cells. This approach allows us to detect exon inclusion in the primary transcripts themselves, rather than in surrogate splicing reporters. We validated this assay in cells with and without FN-EIIIA and -EIIIB expression. In a small-scale CRISPR KO screen of candidate regulatory splice factors, we successfully detected known regulators of EIIIA and EIIIB splicing, and detected several novel regulators. Finally, we show the potential in this approach to broadly interrogate upstream signaling pathways in aortic endothelial cells with a genome-wide CRISPR-KO screen, implicating the TNFalpha and RIG-I-like signaling pathways and genes involved in the regulation of fibrotic responses. Thus, we provide a novel means to screen the regulation of splicing of endogenous transcripts, and predict novel pathways in the regulation of FN-EIIIA inclusion.


Assuntos
Processamento Alternativo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Éxons , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Domínios e Motivos de Interação entre Proteínas , Animais , Proteínas de Transporte , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/química , Citometria de Fluxo , Técnicas de Inativação de Genes , Genes Reporter , Camundongos , Ligação Proteica , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...